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An analytical study is made of a flow with swirling motion through a bend in a pipe 
with circular cross-section. The intensity of the swirl and the axial velocity 
distribution may change along a curved path according to the conservation law of 
angular momentum that is the basic principle used in this analysis. The analysis deals 
with the variation of angular-momentum flux components of the flow along the pipe. 
Approximate inviscid solutions indicate that, depending on the inlet conditions of 
the flow and the configuration of the bend, different types of swirling motion appear 
in the bend. The sign of a constant C appearing in the analysis is a governing 
parameter determining the flow type. Comparisons are made with the experimental 
results of other investigators. Finally, examples of swirling motion appearing in a real 
curved duct are discussed. 

1. Introduction 
Flow of a fluid in a curved duct has been the subject of much attention among 

investigators for its practical importance and scientific interest, and many valuable 
results have already been obtained. However, most of these results have been limited 
to cases in which fully developed flows were introduced into a single or composite 
bend. 

In practice, however, flow approaching a bend is not always in a fully developed 
state, because it depends on the upstream conditions in the pipe. The flow into the 
bend may be associated with a swirling motion or shear component in axial velocity 
possibly as a result of fluid machines or spatially curved ducts ahead of the bend. 
The flow into an elbow-type draft tube of a water turbine working under partial load 
has an associated swirling component, and that is a primary reason for vibration of 
the draft tube as shown by Murakami (1961). Shimizu (1975) meamred velocity 
distributions across the downstream section of multiple 90" bends and reported that, 
depending on the method of connecting the 90" bends upstream, there were various 
combinations of swirling and axial shear components. These additional flow com- 
ponents may alter the flow pattern from that of the well-known flow in a curved duct. 

Binnie (1962) observed flow with a swirling motion through a bend and analysed 
the motion of a fluid particle that is in contact with the pipe wall. The particle motion 
would be periodic wavy or complete circular depending on the inlet conditions. Since 
Binnie's analysis was limited to flow adjacent to the wall, he gave no description of 
the flow field in the duct. Hawthorne (1951) indicated theoretically the appearance 
of secondary streamwise vorticity (swirling motion) along a curved streamline when 
initially there is a vorticity component normal to the streamwise direction. Applying 
this theory to a bend flow when the initial flow has uniform pressure and velocity 
varying in only one direction, he obtained a solution for secondary swirling motion 
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with its direction changing alternately along the bend. Similar procedures were 
developed by Horlock (1956) and Lakshminarayana & Horlock (1967) for flow 
through a bend or an axial-compressor cascade. Some success was achieved in 
predicting the flow field. 

When the initial flow into a bend has a swirling component, however, it is difficult 
to analyse the flow using the method employed by Hawthorne for two reasons. First, 
a streamline of the flow is spiral along the pipe axis, and the principal normal of the 
streamline varies from place to place; it does not remain on the plane of curvature, 
whereas Hawthorne assumed it to be permanently on it. Secondly, the flow with the 
swirling component is associated with the streamwise vorticity. According to the 
present analysis, this vorticity component alters vorticity normal to the streamline, 
the effect of which cannot be neglected when one considers the swirling flow in the 
bend. This effect has not been taken into account in the Hawthorne-type analysis. 

The present study develops an analytical approach to predict flow behaviour in 
a bend where there is initial swirling motion. The flow is formulated by use of the 
angular-momentum theory written in an integral form. The inviscid approximate 
solutions should help understanding of the qualitative nature of the flow in the bend. 
Experiments on swirling flow in a bend performed by Hawthorne (1951) when the 
initial flow was associated with an axial shear component and by Shimizu & Sugino 
(1980) when flow with a swirling component entered a bend are referred to for 
comparison with the predicted results. Some examples in the engineering field of 
swirling motion through a bend show aspects of flow behaviour similar to those 
predicted here. 

2. Theory 
A shady incompressible flow is assumed here. Fundamental equations that 

describe the flow in a curved duct are obtained by considering a conservation law 
of angular-momentum flux of the flow along the curved duct. Figure 1 shows the 
coordinate system employed in \this study: 0 is the angular position of a section 
measured from the bend inlet, and P and q5 are the polar coordinates of a point within 
the section. The radii of curvature of the bend and of the pipe are 2 and P,  
respectively. Figure 2 shows an elementary part of the bend whose deflection angle 
is dB and the broken line denotes a control surface across which the balance of 
angular-momentum flux of the flow will be considered. Flow into the section where 
0 = 0,  the upstream section of the control surface, generally has some angular- 
momentum flux, T b  definitions of the angular-momentum-flux components are 
illustrated in figure 3. In the cross-section considered, we introduce the P-axis in the 
plane of curvclture rtnd the N-axis perpendicular to it. The flux of angular momentum 
is resolved into three components: around the pipe axis, P-axis and N-axis respec- 
tively, which me expressed by the following formulae : 

A(S)  = p $" vz P2 cos q5 dq5 dP, 
0 0  

c"(0) = p JI" 82 sin q5 dq5 dP, (3) 
0 0  
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FIGURE 1.  The coordinate system employed. 
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FIGURE 2. Elementary part of a bend having a deflection angle do. The broken line denotes a 
control surface. 

where Po and V+ are axial and tangential velocity components and p is fluid density. 
b relates to the swirling motion of the flow and is used as a parameter of the swirl 
intensity. The residual components A and 2 relate to an uneven distribution of the 
axial velocity. 

Since the downstream section of the control surface is inclined by dB in the 
upstream section, the reference axes to calculate the angular-momentum flux differ 
a t  up- and downstream sections. In  order to apply the momentum theory, a 
unification of the reference axes will be necessary. Here the axes at  the downstream 
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FIGURE 3. Definitions of angular-momentum-flux components 6, /? and %. 

section will be chosen, so (1)-(3) for influx of the angular momentum at the section 
8 = 8 should be changed to those referring to new axes at  0 = 8+ d8. Let unit vectors 
corresponding to the pipe axis, P-axis and N-axis at the downstream section be i ,  
j and k respectively; then the angular momentum influx across the upstream section 
Mi, can be written 

Mi, = i(a-II^dB)+j {(-pRJJV# PePsin$d$dB 

+pRJJVr VeBcos$d#dB+h 

where 
downstream section Mout can be written as 

is radial velocity. Similarly, the angular momentum efflux across the 

Then the angular-momentum flux balance across the control surface becomes 

If the external force moment acting on the control surface is denoted by N, the 
following relation holds : 

N+Mi,-M,,, = 0. (7) 

The external forces are exerted by pressure and friction forces acting on the control 
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FIQURE 4. Flow model assumed here. (a) Axie- velocity at q5 = a; (b)  equiaxial velocity COT 
(c) tangential velocity profile (forced vortex). 

)ur ; 

surface of the fluid. In  order to obtain approximate solutions, it is assumed that the 
flow is inviscid. Then the external torque can be expressed as 

N = i (- cos $ 42 d$ d4) d e + j  (- [Jg cos $ e2 d$ d4) d6 

+k(-j[$sinq542d$di ) do, (8) 

where P is static pressure. The pressure acting on the bend wall pw contributes to 
the torque of the order of Because of its smallness it can be neglected. 

3. Solutions obtained with a simple flow model 
To obtain an approximate solution, a simple flow model is introduced. A flow 

with a forced-vortex-type swirling motion with a shear-type axial velocity is 
assumed. The model flow is illustrated in figure 4. This model is the same as the 
approximate solutions in Hawthorne’s analysis. The velocity distributions of the 
model are expressed by 

where V, is the mean axial velocity and 4 is tke angular velocity of the swirling 
motion, The angle a is the shear direction and E is the shear intensity of the axial 
velocity. Radial velocity is usually smaller than re or r6, and the contribution to the 
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angular-momentum-flux change may be so negligibly small that it can be neglected 
in the approximate solution. 

For convenience, the following dimensionless variables are introduced : 

Now substitution of (9) into (1)-(3) gives the relations 

I a=+, 
A = ?j( cosa, 

c = sin a, - 
where 6 = l/( Vm/ro) and w = d/( Vm/ro). 

Although the real velocity distribution appearing in the actual physical systems 
is not exactly the same as the assumed one, averaged properties of the flow across 
the section would be similar if the flux of angular momentums were the same. 

Euler's equation of motion in the r-direction, 

gives the pressure distribution in the cross-section if the relationship of (9) is 
introduced, and an integration is performed over the section with respect to 8. Let 
Po be the pressure at  the centre of the duct, then 

If (9), (10) and (12) are substituted into (7) and the analysis is confined to a bend 
with a larger radius of curvature than T o ,  the momentum equations reduce to 

I I1 

d51 I I _-  d o -  ! - A  I 
I 

ds 
de 
-= 

I I 

I ROA I 
I 

L- - - - - -J  

These differential equations govern the variations of angular momentum flux along 
the curved duct. Equation (13) can be written, taking the axial vorticity wg = 2w, 
as 

9 = -25 cosa. 
de 

This equation is the same as (14) in Hawthorne's report, which describes the 
generation of streamwise vorticity along a curved path when there is vorticity normal 
to the streamline. Equations (14) and (15) are the additional dynamic relations 
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FIGURE 5. Angular-momentum-flux components 52 and A evaluated at two different reference axes. 
In the initial section they are 52 and A ,  but in the downstream section additional terms -Ad@ 
and a d 0  appear that are part of the variation of these components, group I in (13) and (14). 

FIGURE 6. Rotation of vector components A and E by a swirling motion which causes variation 
of these components, group 11 in (14) and (15). 

needed to describe the flow in the bend. These equations indicate that the mutual 
interactions among angular-momentum-flux components of flow in a bend are 
essential to understand the characteristic features of the flow. 

Equations (13)-(15) can be understood intuitively from another point of view. The 
variations of angular-momentum-flux components along a curved path are interpre- 
ted as a sum of two basic contributions. In  the equations, the right-hand-side terms 
are separated into two groups I and 11, as enclosed by the broken lines. Group I 

describes the variations of the vector components lying on the curvature plane (SZ 
and A)  as a result of the rotation of the reference axes. As shown schematically in 
figure 5 ,  these components, SZ and A in the upstream section, have additional 
components -Ad0 and RdO when referred to a new coordinate, dt9 downstream 
section. Group 11 describes the contribution of rotation of the vector components lying 
within the cross-sectional surface of the bend (A and E) by the swirling velocity, as 
is shown in figure 6. The rotation angle can be calculated as RSZ dO within the mean 
axial flow, subtending an arc length of Rde. This rotation of the vector causes 
variations in the vector components of - RSZEdO or RSZA dO respectively. 
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FIQURE 7. Two integral surfaces of differential equations, sphere and paraboloid, and a solution 
curve determined as an intersection of these surfaces. 

To study the general properties of the equations, two integrals are derived. By 
eliminating R, the following relation is obtained as a first integral : 

D 2 + A 2 + E 2  = C;, (17) 
where C ,  = (8: +A: + E;)i = const. is the integral constant. The suffix zero attached 
to any variable shows the value evaluated at the bend inlet section. Thus, the sum 
of the squares of the angular-momentum-flux components is an invariant of the flow. 
This conclusion should not be confused with the usual conservation law of angular- 
momentum flux, for in this analysis a local coordinate system is adopted instead of 
an absolute one. The implication of the relation is that the angular-momentum-flux 
vector M should exist on a spherical surface of radius C ,  in (8, A, 8)-space, as shown 
in figure 7. The second integral is obtained by eliminating A from (13) and (15), and 
the result is 

E++RQ2 = C,, (18) 
where C,  = Eo+tR8i  = const. is the integral constant, which can be considered as 
a second invariant of the flow. The values C, and C,  are determined from the inlet 
flow conditions into the bend. The parabolic relation between 8 and 8, (18), is also 
drawn in figure 7. The shape of the parabolic surface is determined only if the bend 
radius R is given while the vertical position along E-axis depends on the inlet flow 
conditions. Thus the shape of the paraboloid can be considered as the characteristic 
one for a bend having radius of curvature R. The solution curve is given as the 
intersection of the sphere and the paraboloid, an example of which is given in the 
figure. It is convenient to project the curves onto a (8, E)-plane to clarify the overall 
behaviour of the solution curves. In  this plane five relative configurations between 
a parabola and a circle are possible, as shown in figure 8. A particular solution 
corresponds to each configuration. In what follows, we shall discuss the character- 
istics of each solution and the corresponding physical flow characteristics appearing 
in the bend. 
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FIGURE 8. Solution curve projected onto the (a, E)-plane, showing five relative positions 
between circle and parabola. 

First consider case (a) when there is one tangential contact point between two 
curves. The solution curve reduces to a point (SZ = A = 0 , s  < 0), which corresponds 
to a singular point of the differential equations, and the flow pattern does not change 
along the curved path. A flow having higher axial velocity on the outer side of a bend 
duct (Zo < 0) is simulated by this case. Because this configuration of axial velocity 
generates a stable stratification of the centrifugal force, no further change in the 
motion is expected, as the theory predicts. 

In case (b), there are two intersection points. This case is realized when the apex 
of the parabola exists within the interior region of the circle, i.e. when the following 
relation is satisfied : 

(SZ;+A;+E;)t > IE0+$SZ:I, (19) 

C = SZi+Ai+Ei-(Eo+$52:)2, (20) 

or if a new parameter C is introduced, 

then C > 0. In figure 9, the solution curves projected onto the (SZ,  A)-plane are shown. 
The curves are drawn with C, constant and C, having two values of different sign. 
When the apex of the parabola lies within the lower semicircular, negative region of 
8, the curve has an elliptical shape, while it deforms into a butterfly form concaved 
in the A-axis direction in the other case. In either case, when the inlet state is So, 
for example, as the flow proceeds through the bend duct, 8 increases, SZ and A follow 
the curve in the direction indicated by an arrow. The sign of 51 changes along the 
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FIauRE 9. Solution curves projected onto the (n, A)-plane when C is positive. R = 6, c, = 0.5: 
(a)  C, = -0.3; (a) C2 = 0.3. Broken line is for the cwe R = 20. 
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-0.5 I 
FIauRE 10. Solution curve projected onto the (a, A)-plane when C is zero. R = 6, 

C, = 0.5, C2 = 0.5. 

curve, so a swirling motion with its direction changing alternately appears in the 
bend. 

A typical example of case (b) is a Hawthorne-type inlet flow, (52, =.Yo = 0, 
A, 9 0), i.e. initially with velocity varying only in N-axis direction. The apex of the 
parabola exists at the origin in this case, and the experimental results show that the 
swirling motion with alternately changing direction appears, as predicted here. 

As the radius of curvature of the bend increases, the shape of the solution curve 
becomes slender as shown by the broken line in the figure, and the secondary swirling 
becomes weak. Hence, the effect of the existence of the swirling component 
(streamwise vorticity) on the variation of the vorticity normal to the streamline, 
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which was neglected in Hawthorne’s analysis as mentioned in $1, becomes less 
important for large R. This point will be discussed in detail in $5. 

In case (c) there exist two intersection points and one tangential contact point. 
This solution is obtained when C = 0. The solution curve projected onto the (52, A)- 
plane is shown in figure 10. The characteristic feature of the curve is that it passes 
through the origin. When an initial flow into a bend is denoted by So, 52 and A follow 
the curve in the arrow direction and proceed to the origin (52 = A = 0). To reach the 
origin from the starting point So, an inifinitely large deflection angle of the bend is 
required, for near the origin the deflection angle can be expressed as 

,g=- lnQ+A, 
(RC,- 1): 

where A is constant. This relation indicates that the state represented by the origin 
can never be attained in a real bend. Thus a gradually terminating swirling motion 
appears in the bend. Of particular interest is the case with an initial flow having a 
higher axial velocity on the inner side of the bend (Sa, = A, = 0, 8 > 0), i.e. the 
origin corresponds to the initial state. This flow condition corresponds to a singular 
point and is neutrally unstable with respect to a small disturbance, in contrast to 
case (a). A swirling flow in the clockwise or counterclockwise direction appears in 
the downstream section depending on the nature of the disturbance, as shown by the 
dotted line and arrows in the figure. Because this configuration of the initial axial 
velocity is unstable, it is soon replaced by the Dean-type double spirals that usually 
occur in a bend. In a sharply curved bend, however, there is not enough time for the 
Dean-type secondary flow to develop, and the potential vortex (3 > 0) appearing in 
the inlet region of the bend would be followed by a swirling motion in the downstream 
section. 

Tunstall & Harvey (1968) obgerved a single circulstion about, the axis (swirling 
motion) in either a olockwise or counterclockwise direction in the down&eam section 
of a mitred right-angle bend. The direction of swirl changes at a low frequency. They 
explained that a large-scale turbulent vorticity flowing into the bend switched the 
direction, which can be considered one of the disturbances as desoribed above. 

In case ( d )  there are four interseotion paints. The apex ofthe parabola exists outsidg 
the circle, and this situatiap would be obtained when C < 0. Initial swirling motion 
(fa, =k 0) is inevitable to realize thia type of flow as i s  easily Been from (20). The 
solution ourves projected on the (a, A)-plane are ghown in figure 11. Two separat,e 
curves appear, and which one is the wlution cupye depends on whether the initial 
swirling component sd is positive or nsgative. The valuers efQ and A follow the aurve 
in the counterclockwise direction as 0 increases. Ie this caBe the salution curves do 
not pass through the line D = 0, so the swirl direction remains unchanged through 
the bend. If an initial flow has only a swirling component (a, P 0, A, = Eo = 0), and 
an inequality relation 1/2RQ; 9 lQ,l holds, the solution curves reduce to two points. 
Thus, for a bend having large R, a awirling motion can pass through it without 
undergoing any change. 

In the last case, (e), there are two tangential contact points. Thialparticular case 
is obtained when A, = 0 and E, = 1/R, and these points are singular pointg. Thus, 
the initial flow remains unchanged through the bend. To the ctuthor’s knowledge, this 
type of flow has not been reported before. 

From the above considerations it is concluded that the sign of the constant C or 
the relative position of the apex of the parabola with respect to the circle, which is 
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FIGURE 11.  Solution curves projected onto the (a, A)-plane when C is negative. R = 6, 

C, = 0.5, C,  = 0.6. 

an initial 

determined from the initial flow and the bend geometry, is a factor determining what 
kind of swirling motion would appear in a bend. 

Figure 12 shows an example of variation of angular-momentum-flux components 
with 8. The swirl intensity Q as well as other components shows sinuous variation 
along 8 except for the gradually terminating case. The pitch of these curves differs 
from case to case. The pitch angle 8, is estimated from (13) as 

d8 = -dQ/A. 
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Therefore 
ds2 

8 =-- 
f (Q4-4/R4(1-RC2)Q2+4C/R2)4’ 

Integrating this relation gives the following expressions for 8,. 
For C > 0 

and C < 0 

where 

and 

8 1  a 
0 = -  R (a2 + b 2 ) i K (  (a2 + b2) i )  ’ (23) 

The function K(k)  denotes a complete elliptic integral of the first kind. Figure 13 
shows the variation of the pitch angle when the initial angular-momentum-flux 
component a, is kept constant and A, is vaned. When C is positive, 0, decreases 
as A, increases but it increases when C is negative. At the point where C becomes 
zero, 8, becomes infinite. 

4. Comparison with experimental results 
Experimental results for swirling flow in a bend performed by other investigators 

will be compared with the predicted results given in the previous section. Hawthorne 
(1951) made measurements of total-pressure distributions of flow in a bend with 
radius of curvature lor,, when the inlet flow is of uniform pressure with a velocity 
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FIQURE 14. Comparison with measured results of Hawthorne when an initial flow with f2, = E,, = 0 
and A,  = -0.5 enters a bend of R = 10: 0,  shear direction of axial velocity; 0, twisting angle 
per 25 in. of straight pipe due to secondary circulating motion; ---- , predicted results for shear 
direction and swirl intensity. 

v&rying in Q P ~  direction only, From the measured total-pressure distributions, the 
shear angle Q and the twist angle due to the secondary swirling motion were 
estimated. The results are given in figure 14. The results predicted by the present 
method far the same initial conditions are shown by broken lines. Here the definition 
of shear angle a is in agreement with Hawthorne. Since the intensity of the secondary 
Pwirling motion was represented by a twist angle per 25 in. of straight pipe but not 
by swirl intensity itself in his study, it is impossible to expect an em& correspondence 
between them. But the treQd of the ppedioted curves ie the game a8 the measured 
pnee, thus confirming the analysis in this case as being correct. 

&imisu & Sugino (1980) measured velocity distributions in 4 bend duct with a 
radius of ourvatwe 6r,, when a flow with fi swirling component entered the bend. 
Figure 15 show@ the measured variations of the swirl intensity along the deflection 
angle. When flow with ap intensive swirl component enters the bend, the sign of D 
does not change and shows only a wavy variation along 8. The pitch of this wavy 
curve becomes small as the intensity of the inlet swirl is increased. When flow with 
a weak swirl component enters the bend, the swirl intensity decreases monotonically 
and finally changes its sign, although the deflection angle of the bend is too short 
to attain this state in this case. The predicted results corresponding with the above 
initial conditions are given by broken lines in the figure; they indicate a tendency 
similar to the measured one, although the wave pitch shows some disagreement, 
possibly caused to a great degree by a frictional effect on the momentum balance, 
which is neglected in the approximate solutions. To obtain a quantitative agreement, 
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FIGURE 15. Comparison with swirl intensity measured by Shimizu & Sugino with bend of R = 6: 

predicted swirl intensity for the same initial conditions as in the experiment. 
0 ,  a, = 0.971, A ,  = Zo = 0; 0, a, = 0.483, A ,  = So = 0; 0,  0, = 0.159, A ,  = Eo = 0; ----, 

(4 (b) 

FIGURE 16. Axial and tangential velocity distributions in a l .6ro downstream section of a second 
bend with a connecting angle 4 = 120°, after Shimizu (1975). (a) Axial velocity; (b) tangential 
velocity . 

it would be necessary to consider the effect of secondary flow of Dean-type double 
spirals on the velocity distributions, in addition to the effect of friction, the 
development of which cannot be predicted by the present method. 

5. Swirling motion in real curved duct 
In triply connected 90" bends, the loss of head along the bends has a complicated 

form depending on the manner in which the bends are connected. Measurements made 
by Shimizu (1975) showed that the bend loss varies from two to five times that of 
a single 90' bend loss. He also indicated from detailed velocity measurements that 

15 Y L M  175 
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FIGURE 17. Total loss of triply connected 90' bends c8 relative to that of a single 90' bend as 
a function of connecting angles $ and @ after Shimizu (1975). 

the swirling motion and the uneven axial velocity appearing in the bend duct have 
primary effects on the bend loss. 

I n  the first bend, Dean-type secondary motion appears and a shear axial velocity 
results. If a second bend is connected that is non-coplanar with the first one, angle 
q5 between them, the axial shear component produces a swirling component in the 
downstream section of the bend, as does Hawthorne-type flow. Figure 16 shows an 
example, measured a t  the 1.6r,, downstream section of the second bend by Shimizu. 
Single swirling motion, although not axisymmetry, with axial shear component is the 
characteristic feature of the velocity distribution at this section. If these components 
enter a third bend, generally non-coplanar with the former bends, making angle $ 
with the second bend, their intensities are varied in the bend by the mechanism 
described here. The resultant swirling intensity a t  the bend exit has an intimate 
relation with the bend loss, and the total loss becomes a complicated function of the 
connecting angles q5 and $, as shown in figure 17. 

Flow in a draft tube of a water turbine operating under partial load is accompanied 
by a swirling motion. Murakami (1961) suggested that such swirling motion causes 
a vibration of the draft tube as a result of whirling motion of the swirling axis in the 
tube. The whirling frequency is determined as a function of the swirl intensity. 
Uneven efflux of momentum from the draft tube due to the whirling motion is the 
origin of the exciting force. A bend-type draft tube is commonly used for geometric 
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FIGURE 18. Effect of swirling motion on prediction of swirl intensity: -, neglected, using 
equation (18) in Hawthorne’s paper; ---- included, based on the present analysis. 

reasons and the swirling motion is subjected to the influence of the curvature of the 
duct. Thus a change in vibrating frequency of the draft tube is expected if the bend 
geometry is varied. In  fact, Murakami pointed out that the frequency varies when 
the radius of curvature of the bend R is increased from 3 to 6. This variation would 
have some relation with the phenomena considered here. 

If we consider only one half (upper or lower half‘) of a section of a bend with a 
circular cross-section, the final state of the bend flow would be a single vortex (swirling 
motion) instead of Dean-type double vortex. In  this case, the fully developed initial 
flow has the A,  component of angular momentum flux associated with it. According 
to the present analysis, this type of flow is converted into a periodic swirling flow 
of Hawthorne type, although the analysis should be modified for the semicircular 
section. Before the secondary swirling motion attains its final state, some aspect of 
the periodicity would be observed in a real bend. Energy loss across the bend is 
one example showing the wavy variation as pointed out by Hawthorne (1951). 
Choi, Talbot & Cornet (1979) measured wall shear stresses in the entry region of a 
curved tube having R = 7 and indicated that the averaged shear stress around the 
periphery shows some wavy variation along downstream direction. These phenomena 
undoubtedly have an intimate relation with the suggestion made by Rowe (1970) 
that the secondary circulation does not grow monotonically but shows some wavy 
variation. 

It is worth noting that the relative importance of the first term with respect to 
the second one on the right-hand side of (14) becomes significant when RlEl + 1.  This 
term describes the effect of swirling motion SZ (streamwise vorticity) on the variation 
of A (vorticity normal to the streamline) that is neglected in the Hawthorne-type 
analysis. In  a flow passing through a strongly curved bend, i.e. small R, or having 
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a dominant swirling component, If21 >> IB(, this term plays an essential role in the 
variation of A .  Neglecting the term results in a serious error in flow prediction. When 
an initial flow contains only a swirling component, the analysis neglecting the term 
fails completely to predict the variation of the swirl intensity in the duct. Even in 
Hawthorne-type initial flow, A ,  4= 0, the effect becomes large as R decreases. Figure 
18 compares the results based on two analyses, either considering or neglecting the 
swirling-motion effect. When R = 10, no appreciably difference can be seen between 
them, but it becomes noticeable when R is reduced to 4. For a flow in a bend or 
turbomachinery cascade that has a relatively small R (not rare in engineering 
practice) neglect of the effect would lead to some error in predicting the flow. 

The author would like to show his appreciation to the referees for their useful 
suggestions, especially on 993 and 5 to clarify the meanings of the analysis. 
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